

PIN CONFIGURATION

GENERAL DESCRIPTION

The LM358 consists of two independent, high-gain, internally frequency-compensated operational amplifiers, which were designed specifically to operate from a single power supply over a wide range of voltages. The device operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. Its application areas include transducer amplifiers, dc gain blocks and all the conventional operational amplifier circuits.

FEATURES

- Wide range of supply voltages
- Low supply current drain independent of the supply voltage
- Low input biasing current
- Low input offset voltage and offset current
- Input common-mode voltage range including the Ground
- Differential input voltage range equal to the power supply voltage
- DC voltage gain 100 V/mV (typ.)
- Internal frequency compensation

APPLICATIONS

- Transducer amplifiers
- Dc gain blocks
- Conventional op-amp circuits in single power supply systems

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings
Supply voltage	V _{cc}	45V
Input voltage	V _{IN}	-0.3V to +45V
Input current	I _{IN}	50mA at V _{IN} = -0.3V
Maximum output current	I _{OUT}	100mA
Maximum Operating Junction Temperature	Tj	-40°C to 125°C
Storage Temperature Range	T _{STG}	-65°C to 150°C
Lead Temperature (soldering, 10 seconds)	-	260°C
ESD protection (HBM)	-	700V

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings
Input Voltage	V _{IN}	40V
Junction Temperature	Tj	-40°C to +85°C

ELECTRICAL CHARACTERISTICS

(At specified free-air temperature, V_{CC} = 5V, unless otherwise specified)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	V_{CC} = 5V to MAX,	25°C		3	7	mV
		$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4V$	Full range			9	
Average Temperature	αV _{IO}		Full range		7		μV/°C
Coefficient of Input Offset							
Voltage							
Input Offset Current	I _{IO}	V _o = 1.4V	25°C		2	50	nA
			Full range			150	
Average Temperature	αI_{IO}		Full range		10		pA/°C
Coefficient of Input Offset							
Current							
Input Bias Current	I _{IB}	V ₀ = 1.4V	25°C		-20	-250	nA
			Full range			-500	
Common-mode Input Voltage	VICR	V _{cc} = 5V to MAX	25°C	0 to Vcc-1.5			V
Range			Full range	0 to Vcc-2.0			
High-level Output Voltage	V _{OH}	V_{CC} = MAX, R_L = 2k Ω	Full range	26			V
		V_{CC} = MAX, $R_L \ge 10 k\Omega$	Full range	27	28		
Low-level Output Voltage	V _{OL}	$R_L \ge 10 k\Omega$	Full range		5	20	mV
Large-signal Differential	A _{VD}	$V_{cc} = 15V,$	25°C	25	100		V/mV
Voltage Amplification		$R_{L} \ge 2k\Omega$	Full range	15			
Common-mode Rejection	CMRR	$V_{cc} = 5V$ to MAX,	25°C	65	80		dB
Ratio		$V_{IC} = V_{ICR(min)}$					
Supply Voltage Rejection	k _{svr}	V _{CC} = 5V to MAX	25°C	65	100		dB
Ratio ($\Delta Vcc/\Delta V_{10}$)							
Crosstalk Attenuation	V ₀ 1/V ₀ 2	f =1 kHz to 20 kHz	25°C		120		dB
Output Current	I _{OUT}	V _{cc} = 15V,	25°C	-30	-50		mA
•		$V_{ID} = 1V, V_{O} = 0$	Full range	-20			
		$V_{CC} = 15V,$	25°C	15	35		
		$v_{\rm ID} = -1v, v_0 = 15v$	Full range	7	20		
		$V_{CC} = 15V,$ $V_{ID} = -1V, V_{O} = 2V$	25°C	12	28		INA
		$V_{ID} = -1V$,	25°C	12	50	1	μA
		$V_0 = 200 \text{mV}$	25°C			70	
Short-circuit Output Current	IOS	$v_{\rm ID} = -1v, v_{\rm O} = 15v$	25 C		50	/0	

Supply Current (two amplifiers)	I _{cc}	V_0 = 2.5V, No load V_{cc} = MAX, V_0 = 0.5V cc. No load	Full range Full range	0.7 1.2 1 2	mA
Slew Rate	SR	$V_{CC} = 15V,$ $V_{IN} = 0.5 \text{ to } 3V,$ $R_{L} = 2k\Omega, C_{L} = 100\text{pF},$ unity gain	25°C	0.7	V/µs
Gain Bandwidth	GBW	$V_{CC} = 30V,$ f = 100kHz, $V_{IN} = 10mV, R_L = 2k\Omega,$ C_L = 100pF	25°C	700	kHz
Total Harmonic Distortion	THD	$f = 1 \text{kHz}, A_V = 20 \text{dB},$ $R_L = 2 \text{k}\Omega, V_O = 2 \text{Vpp},$ $C_L = 100 \text{pF},$	25°C	0.04	%

*All characteristics are measured under the open-loop conditions with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 36V, $V_{cc(max)}$ = 45V. Full range is -40°C to +125°C.

BLOCK DIAGRAM

Typical Single-Supply Applications

 $(V^+ = 5.0 V_{DC})$

Non-Inverting DC Gain (0V Output)

*R not needed due to temperature independent I_{IN}

 $\label{eq:Where: V_O = V_1 + V_2 - V_3 - V_4} \\ (V_1 + V_2) \ge (V_3 + V_4) \text{ to keep } V_O \ge 0 \ V_{DC}$

 $V_O = 0 V_{DC}$ for $V_{IN} = 0 V_{DC}$ A_V = 10

"BI-QUAD" RC Active Bandpass Filter

f_{o = 1 kHz} Q =50 Av =100 (40 dB)

Fixed Current Sources

Lamp Driver

Squarewave Oscillator

Pulse Generator

PAD LOCATION AND COORDINATES

Die size (including scribe line): 0.73mm×0.52mm

# Pad	Pin Name	Pad centers coordina	Pad Size (µm×µm)	
	(Package)	Х	Y	
1	# 1 OUT	130	417	90×90
2	#1 IN-	107	107	90×90
3	#1 IN+	237	107	90×90
4	GND	364	100	90×90
5	#2 IN+	492	107	90×90
6	#2 IN-	622	107	90×90
7	#2 OUT	599	417	90×90
8	VCC	364	417	90×90

BONDING DIAGRAM

ASSEMBLY CHARACTERISTICS

No.	Assembly Characteristics	Value
1	Wafer Size	6 Inch
2	Wafer Thickness before Grinding	675 +/-20 μm
3	Scribe Street Width	80 μm
4	Chip Size (including Scribe Line)	0.73×0.52 mm ²
5	Die Attach Material	Substrate is connected to Gnd
6	Quantity of Bond Pad Metal Layers	1
7	Pad Thickness	1.6 μm
8	Composition of Metal Layers	Al+Si(1.0%)+Ti(0.5%)
9	Min. Bond Pad Opening Size	90 ×90 μm
10	Min. Bond Pad Pitch	130 µm
11	Min. Wire Diameters	1 mil (25 .4µm)
12	Circuit Under Pad Design (CUP)	No

ADDITIONAL INFORMATION

Pb-free products:

• RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

Green products:

- Lead-free (RoHS compliant)
- Halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

The appearance complies with the requirements of the company standards