

FEATURES

- Output voltage 5V ± 2%
- Very low current consumption
- · Power-on and undervoltage reset
- Reset low down to V_Q = 1 V
- Very Low- drop voltage
- · Short- circuit- proof
- Reverse polarity proof
- Suitable for use in automotive electronics

DESCRIPTION

The PTIGÍ is a monolithic integrated low-drop voltage regulator in a 5 pin TO- package. An input voltage up to 45 V is regulated to $V_Q = 5.0$ V. The IC is able to drive loads up to 450 mA and is short- circuit proof. At over temperature the PTIGÍ is disabled by the incorporated temperature protection. A reset signal is generated for an output voltage V_Q of typ.4.65 V. The delay time can be programmed by the external delay capacitor.

DIMENSIONING Information on External Components

The input capacitor C_I is necessary for compensating line influences. The output capacitor C_Q is necessary for the stability of the regulation circuit. Stability is guaranteed at values $C_Q \ge 22 \ \mu F$ and an ESR of $\le 5 \ \Omega$ within the operating temperature range.

Circuit Description

The control amplifier compares a reference voltage to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The IC also incorporates a number of internal circuits for protection against:

- Overload
- Over- temperature
- Reverse polarity

PIN CONFIGURATION (top view)

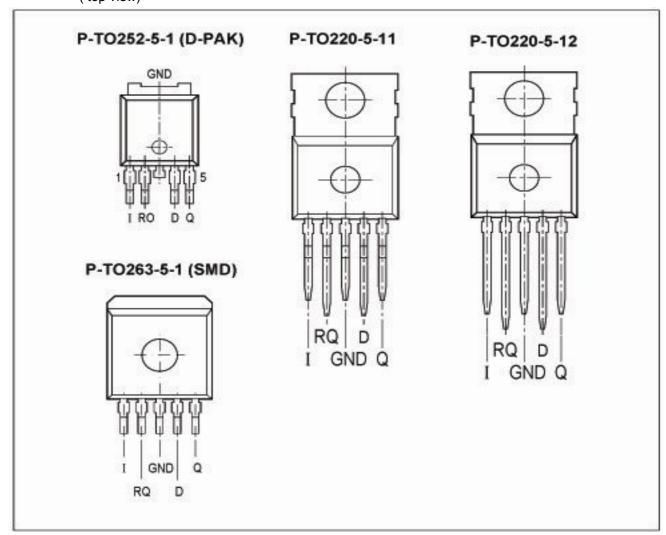


Figure 1.

Pin Definitions and Functions

Pin No	Symbol	Function
1	1	Input; block to ground directly at the IC with a ceramic capacitor
2	RQ	Reset Output; open collector output
3	GND	Ground; Pin 3 internally connected to heatsink
4	D	Reset Delay; connected capacitor to GND for setting delay time
5	Q	Output; block to ground with a ≥ 22 µF capacitor, ESR < 5 Ω at 10 kHz

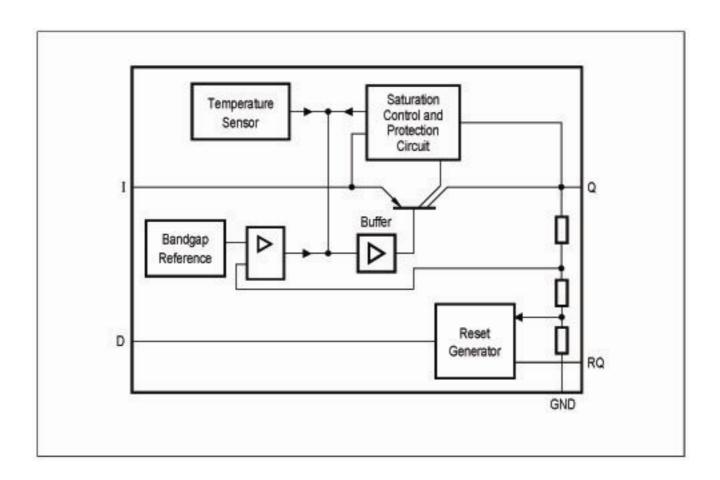


Figure 2. Block Diagram

ABSOLUTE MAXIMUM RATINGS

 $T_j = -40 \text{ to } 150 \text{ }^{\circ}\text{C}$

Parameter	Symbol	Limit	Values	Unit	Test Condition	
raiailletei	Symbol	min	max	Offic	rest condition	
Voltage Regulator		•	•			
Input						
Voltage	Vı	- 42	45	V	-	
Current	Iı	-	-	-	Internally limited	
Output			•		·	
Voltage	VQ	- 1.0	16	V	-	
Current	ΙQ	-			Internally limited	
Reset Output	•		•		·	
Voltage	V_{RO}	- 0.3	25	V	-	
Current	I _{RO}	- 5	5	mA	-	
Reset Delay	•		•		·	
Voltage	V _D	- 0.3	7	V	-	
Current	I _D	- 2	2	mA	-	
Temperature	1	•		1	·	
Junction temperature	TJ	-	150	°C	-	
Storage temperature	T _{stg}	- 50	150	°C	-	

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

OPERATING RANGE

Parameter	Symbol	Limit Values		Unit	Remarks	
1 didilictor	- Cyllison	min	max	O III.	rtomanto	
Input voltage	Vı	5.5	42	V	-	
Junction temperature	TJ	- 40	150	°C	-	

CHARACTERISTICS

V_i = 13.5 V; - 40 °C <T_J<150 °C (unless otherwise specified)

Parameter	Symbol	Limit		Values	Unit	Measuring Condition	
raiaiiietei	Symbol	min typ		max	Offic		
Output		•	•			·	
Output voltage	VQ	4.9	5.0	5.1	V	5ma < I _Q < 400 mA	
						$6V < V_1 < 40 V$	
Output current	IQ	450	700	-	mA	-	
limitation ¹⁾							
Current consumption;	Iq	-	150	200	μΑ	I _Q = 1 mA	
$I_q = I_1 - I_Q$						T ₁ =25 °C	
Current consumption;	Iq	-	150	220	μΑ	I _Q = 1 mA	
$I_q = I_1 - I_Q$						T₁ ≤ 85 °C	
Current consumption;	Iq	-	5	10	mA	I _Q = 250 mA	
$I_q = I_1 - I_Q$	Iq		12	22		$I_Q = 400 \text{ mA}$	
Drop voltage 1)	V_{dr}	-	250	500	mV	I _Q = 300 mA	
						$V_{dr} = V_I - V_Q$	
Load regulation	ΔV_Q	-	15	30	mV	I _Q = 5 mA to 400 mA	
Line regulation	ΔV_Q	-15	5	15	mV	ΔV _I = 8 V to 32 V	
						$I_Q = 5 \text{ mA}$	

CHARACTERISTICS (cont[,] d)

 V_i = 13.5 V; - 40 °C < T_J < 150 °C (unless otherwise specified)

Parameter	Symbol	Limit		Values	Unit	Measuring Condition	
		min	typ	max			
Power supply ripple	PSRR	-	60	-	dB	F _r = 100 Hz	
rejection						Vr = 0.5 Vpp	
Temperature output	dV _Q /dT	-	0.5	-	mV/K	-	
Voltage drift							
Reset Timing D and Ou	tput RQ		1	I			
Reset switching	V_{RT}	4.5	4.65	4.8	V	-	
threshold							
Reset output low	V_{RQL}	-	0.2	0.4	V	$R_{ext} \ge 5\Omega$,	
voltage						V _Q > 1 V	
Reset output leakage	I_{RQH}	-	0	2	μA	V _{RQH} > 4.5 V	
current							
Reset charging current	ld	3	6	9	μA	V _D = 1 V	
Upper timing threshold	V_{DU}	1.5	1.8	2.2	V	-	
Lower timing threshold	V_{DL}	0.2	0.4	0.7	V	-	
Reset delay time	T _D	10	16	22	ms	C _D = 47nF	
Reset reaction time	T _{RR}	-	0.5	2	μs	$C_D = 47nF$	

¹⁾ Measured when the output voltage V_Q has dropped 100 mV from the nominal value obtained at V_I =13.5 V

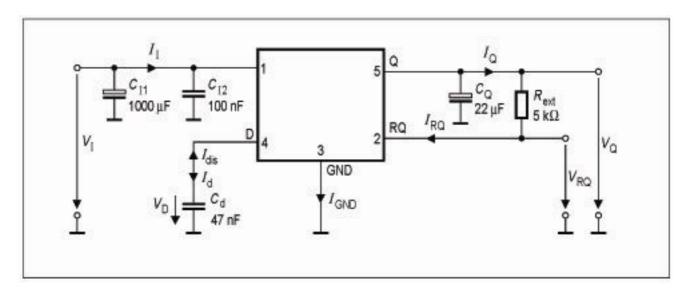
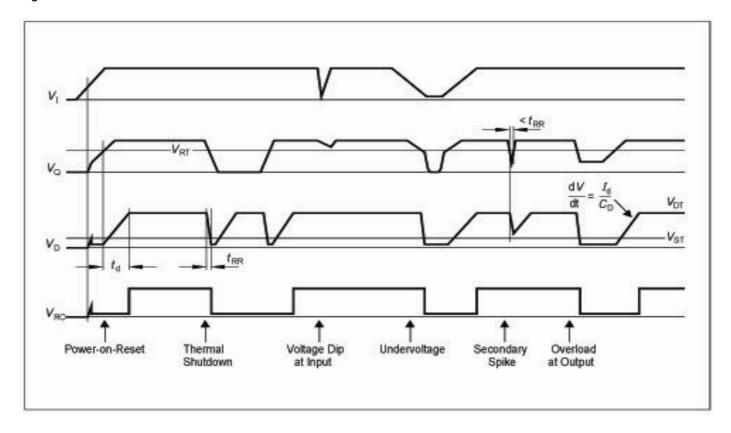
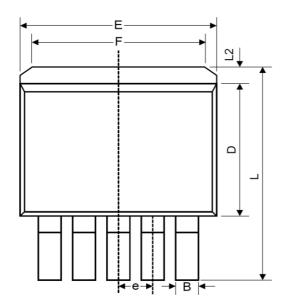
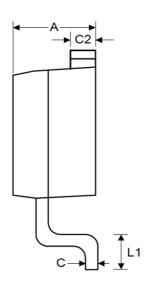
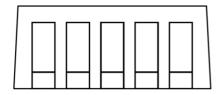


Figure 3. Test Circuit


Figure 4 Reset Timing

TO-263-5L

Symbol	Dimens	ions In Mill	imeters	Dimensions In Inches			
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α	4.07	4.46	4.85	0.160	0.176	0.191	
В	0.66	0.84	1.02	0.026	0.033	0.040	
С	0.36	0.50	0.64	0.014	0.020	0.025	
C2	1.14	1.27	1.40	0.045	0.050	0.055	
D	8.65	9.15	9.65	0.341	0.360	0.380	
Е	9.78	10.16	10.54	0.385	0.400	0.415	
е	1.57	1.71	1.85	0.062	0.068	0.073	
F	6.60	6.86	7.11	0.260	0.270	0.280	
L	14.61	15.24	15.88	0.575	0.600	0.625	
L1	2.29	2.54	2.79	0.090	0.100	0.110	
L2	-	-	2.92	-	-	0.115	