

Features

Input voltage:1.5V~8V

Output range:1.2V~5.0V

 Maximum output current: 400mA @ VOUT=3.3V

PSRR: 60dB @1KHz

Dropout voltage:180mV @ IOUT=100mA

Quiescent current: 0.5µA Typ.

Shut-down current: <1μA

■ Recommend capacitor:1µF

Built-in Short-Circuit Protection, Current

Limiter

Applications

- Radio control systems
- Cellphones, radiophone, digital cameras
- Bluetooth, wireless handsets
- Others portable consumer equipments

General Description

The HM1235 is a high accuracy, low noise, high speed CMOS Linear regulator with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small. The devices offer a new level of cost effective performance in cellular phones, laptop and notebook computers, and other portable

devices.

The current limiter's fold-back circuit also operates as a short circuit protection and an output current limiter at the output pin.

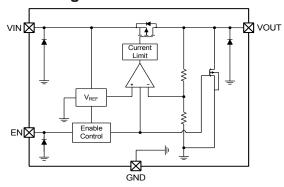
The HM1235 regulators are available in standard SOT23-3, SOT23-5 and DFN1*1-4 packages. Standard products are Pb-free and Halogen-free.

Selection Table

Part No.	Package	Temperature	Tape & Reel
HM1235BXXMR	SOT23-3	-40 ~ +125 °C	3000/REEL
HM1235BXXM5R	SOT23-5	-40 ~ +125 °C	3000/REEL
HM1235BXXDR	DFN1*1-4	-40 ~ +125 °C	10000/REEL
HM1235BXXPR	SOT89-3	-40 ~ +125 °C	1000/REEL

Note: XX indicates 1.2V~5.0V by 0.1V step. For example, 28 means product outputs 2.8V

Order Information


HM1235B12345

Designator	Symbol	Description
12	Integer	Output Voltage(1.2~5.0V)
	М	Package:SOT23-3
(3)(4)	M5	Package:SOT23-5
(3)(4)	D	Package: DFN1*1-4
	Р	Package: SOT89-3
(5)	R	RoHS / Pb Free
3)	G	Halogen Free

Ver1.8 1 May 07,2022

Block Diagram

Pin Assignment

SOT23-3 (Top View)

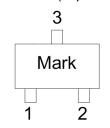


Table1: HM1235BXXMR series (SOT23-3 PKG)

PIN NO.	PIN NAME	FUNCTION
1	GND	GND pin
2	VOUT	Output voltage pin
3	VIN	Input voltage pin

SOT23-5 (Top View)

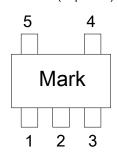


Table2: HM1235BXXM5R series (SOT23-5 PKG)

PIN NO	PIN NAME	FUNCTION
1	VIN	Input
2	GND	Ground
3	EN	Enable(Active high, not floating)
4	NC	Not connected
5	VOUT	Output

DFN1*1-4L

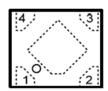


Table3: HM1235BXXDR series (DFN1*1-4PKG)

PIN NO	PIN NAME	FUNCTION
1	VOUT	Output
2	GND	Ground
3	EN	Enable(Active high, not floating)
4	VIN	Input

SOT89 (Top View)

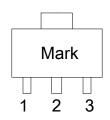


Table4: HM1235BXXPR series (SOT89 PKG)

PIN NO.	PIN NAME	FUNCTION
1	GND	GND pin
2	VIN	Input voltage pin
3	VOUT	Output voltage pin

Absolute Maximum Ratings

Input Voltage0.3V to 9V	Storage Temperature55℃ to 150℃
Output Current450mA	Package Lead Soldering Temperature260 $^{\circ}\mathrm{C}$
Operating Temperature40°C to 125°C	

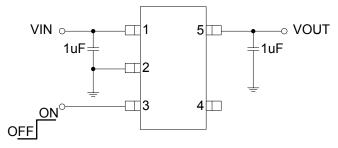
Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit
		SOT23-3	500	
θ_{JA}	Thermal Resistance (Junction to Ambient)	SOT23-5	500	°C/W
OJA	(Assume no ambient airflow, no heat sink)	DFN1*1-4	500	
		SOT89	500	
	Power Dissipation	SOT23-3	0.40	
P _D		SOT23-5	0.40	w
FD		DFN1*1-4	0.40	
		SOT89	0.50	

Note: P_D is measured at Ta= $25\,^{\circ}\mathrm{C}$

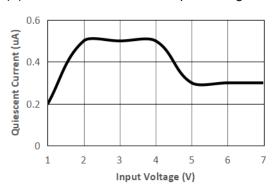
Electrical Characteristics

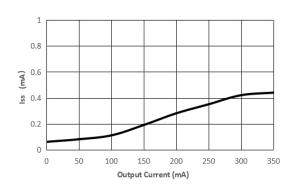

The following specifications apply for V_{OUT} =3.3V, T_A =25 $^{\circ}$ C, unless specified otherwise

SYMBOL	ITEMS	CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IN}	Input Voltage		1.5		8	V	
Vout	Output Range	I _{OUT} =1mA	-2	Vout	2	%	
Ια	Quiescent Current	Vоит=3.3V, Iоит=0		0.5	1	μA	
I _{LIMIT}	Current Limit	V _{IN} =V _{EN} =4.5V		400		mA	
	Drangut Voltage	V _{OUT} =3.3V, I _{OUT} =100mA		180		\/	
V_{DROP}	Dropout Voltage	V _{OUT} =3.3V, I _{OUT} =200mA		400		mV	
$\triangle V_{LINE}$	Line Regulation	V _{IN} =2.7~5.5V, I _{OUT} =1mA		0.01	0.15	%/V	
$\triangle V_{LOAD}$	Load Regulation	V _{ОUТ} =3.3V, I _{ОUТ} =1~300mA		200		mV	
Ishort	Short Current	V_{EN} = V_{IN} , V_{OUT} Short to GND with 1Ω		35		mA	
Ishdn	Shut-down Current	V _{EN} =0V			1	μA	
PSRR	V _{IN} =5V _{DC} +0.5V _{P-P}			60		٩D	
PSKK	Power Supply Rejection Rate	F=1KHz, I _{OUT} =10mA		60		dB	
V _{ENH}	EN logic high voltage	V _{IN} =5.5V, I _{OUT} =1mA	1.2		V _{IN}	V	
V _{ENL}	EN logic low voltage	V _{IN} =5.5V, V _{OUT} =0V			0.4	V	
I _{EN}	EN Input Current	V _{EN} = 0 to 5.5V			1	μΑ	

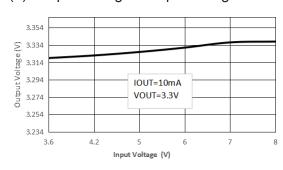
Ver1.8 3 May 07,2022

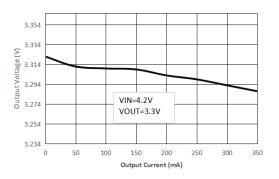
Application Circuits

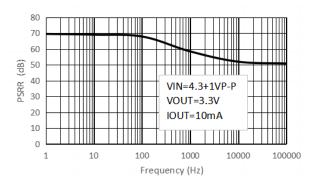



Typical Performance Characteristics

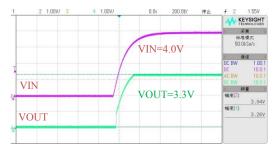
 C_{IN} =1uF, C_{OUT} =1uF, V_{IN} =4.5V, V_{OUT} =3.3V ,SOT23-5, T_A =25°C

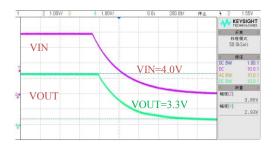

(Unless specified otherwise.Package:SOT23-5L)

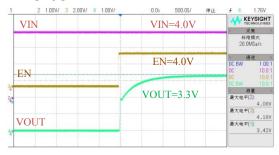

(1) Quiescent current vs Input voltage

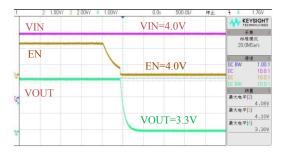


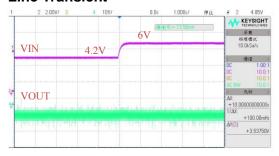
(2) Output Voltage vs Input voltage

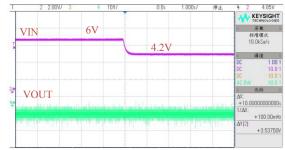


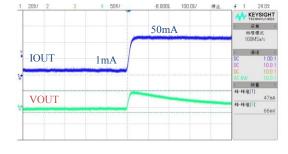

(3) PSRR vs Frequency

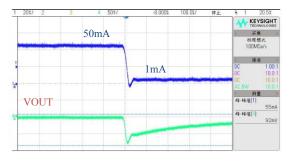



Power ON / OFF




EN ON/OFF




Line Transient

Load Transient

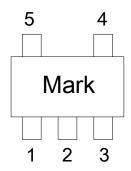
Application Information

In general, all the capacitors need to be low leakage. Any leakage the capacitors have will reduce efficiency, increase the quiescent current.

A recent trend in the design of portable devices has been to use ceramic capacitors to filter DC-DC converter inputs. Ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, recently, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.

Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energy in the inductance of the power leads. A large voltage spike is created when the stored energy is

transferred from these inductance into the ceramic capacitor. These voltage spikes can easily be twice the amplitude of the input voltage step.

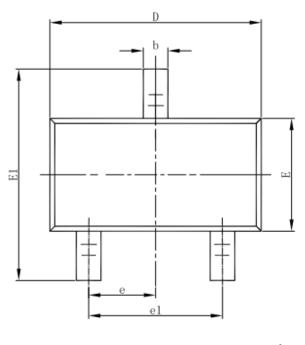

Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multi layer ceramic capacitors (MLCC). Because of the self-resonant be generated under some start-up conditions, such as connecting the LDO input to a live power source.

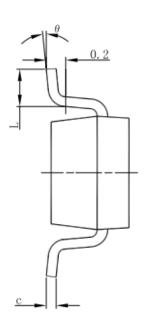
The LDO also requires an output capacitor for loop stability. Connect a 1uF tantalum capacitor from OUT to GND close to the pins. For improved transient response, this output capacitor may be ceramic.

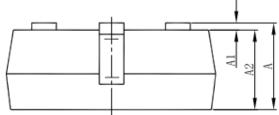
Ver1.8 6 May 07,2022

Marking Description

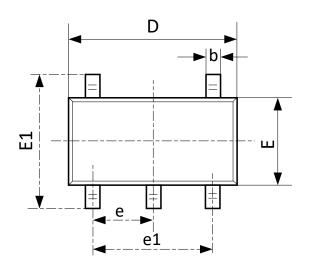
product code: 4
output voltage code:

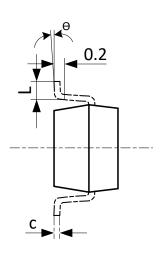

		1	ı		ı		1
Symbol	Voltage(V)	Symbol	Voltage(V)	Symbol	Voltage(V)	Symbol	Voltage(V)
a	0.9	A	3.5	n	2.2	N	4.8
b	1.0	В	3.6	0	2.3	0	4.9
С	1.1	С	3.7	Р	2.4	Р	5.0
d	1.2	D	3.8	q	2.5	Q	5.1
е	1.3	Е	3.9	r	2.6	R	5.2
f	1.4	F	4.0	S	2.7	S	5.3
g	1.5	G	4.1	t	2.8	Т	5.4
h	1.6	Н	4.2	u	2.9	U	5.5
i	1.7	I	4.3	V	3.0	V	5.6
j	1.8	J	4.4	W	3.1	W	5.7
k	1.9	K	4.5	Х	3.2	Χ	5.8
l	2.0	L	4.6	у	3.3	Υ	5.9
m	2.1	М	4.7	Z	3.4	Z	6.0

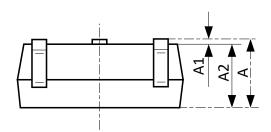

34: The last two of them are based on the time of this product which is the first time into production, the third is the year of this product first time into production, such as expressed in "1" in 2021, in "2" in 2022 and the forth is the mouth of this product first time into production, it can be in 1 \sim 9, which is expressed in "0" in October, in November with an "A", in December with "B"; . For example: 4y16 represents HM1235B33M5R product is first put into production in June in 2021.


Ver1.8 7 May 07,2022

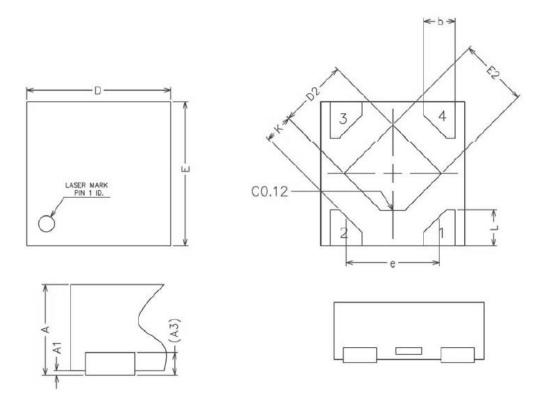
Package Information 3-pin SOT23-3 Outline Dimensions






Cumb a l	Dimensions Ir	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

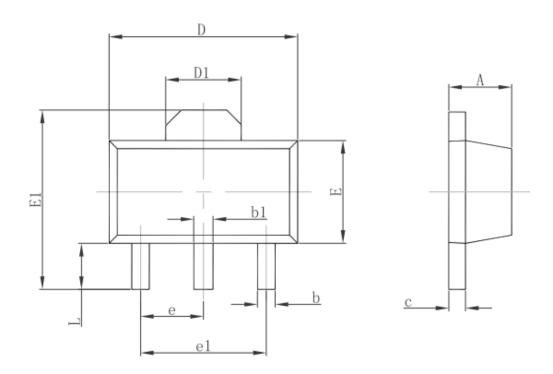
SOT23-5 Outline Dimensions



Constant	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	(BSC)	0.037	7(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0℃	8℃	0℃	8℃	

Ver1.8 9 May 07,2022

DFN1*1-4 Outline Dimensions



COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX		
Α	0.34	0.37	0.40		
A1	0.00	0.02	0.05		
A3	0.100REF				
b	0.17	0.22	0.27		
D	0.95	1.00	1.05		
Е	0.95	1.00	1.05		
D2	0.43	0.48	0.53		
E2	0.43	0.48	0.53		
L	0.20	0.25	0.30		
е	_	0.65	_		
K	0.15	_	_		

3-pin SOT89 Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF.		0.061 REF.	
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP.		0.060 TYP.	
e1	3.000 TYP.		0.118 TYP.	
L	0.900	1.200	0.035	0.047

Ver1.8 11 May 07,2022